
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The pubitc reporting burden for ihis collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense. Executive Service Directorate (0704-0188) Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

05-03-2012
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 January 2008 - 30 November 2011

4. TITLE AND SUBTITLE
(YIP-08) Automated, Certified Program-rewriting for Software Security Enforcement

5a. CONTRACT NUMBER

FA9550-08-1-0044

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Hamlcn, Kevin W.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The University of Texas at Dallas
800 W. Campbell Rd.

Richardson, TX 75080-3021

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research

875 North Randolph Street

Suite 325, Rm 3112

Arlington, VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approve ^br ^oblic ^e\e«*S<i-

13. SUPPLEMENTARY NOTES
Year 4 of the project finalized, tested, and published the Chekov IRM verification system (see outcome 2 of attached report), and extended the
Reins SI I s\siem to Linux-based architectures (see outcome 3 of attached report).
14. ABSTRACT

This project discovered and developed algorithms and tools for (1) automatically retrofitting binary legacy software with access controls, and (2)
formally machine-certifying that the retrofitted software satisfies user-specified security policies. The research resulted in new software security
systems for Java, ActionScript. and x86 native code that provably secure legacy code without any form of code-producer cooperation (e.g., source
code or compiler support)

15. SUBJECT TERMS

software security, validation, runtime monitors, access controls

16. SECURITY CLASSIFICATION OF:
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

u

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

10

19a. NAME OF RESPONSIBLE PERSON

Kevin W. Hamlen

19b. TELEPHONE NUMBER (Include area code)
(972) 883-4724

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std Z39.18

Adobe Professional 7.0

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year and
be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written,
e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov
1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, eg 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned by
the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21 -PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are
indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition number,
etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top
and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the abstract.
Enter UU (Unclassified Unlimited) or SAR (Same as

Report). An entry in this block is necessary if the abstract
is to be limited.

Standard Form 298 Back (Rev 8/98)

V

Final Report: YIP-08

Automated, Certified Program-rewriting for
Software Security Enforcement

Grant/Contract Number: FA9550-08-1-0044

Kevin W. Hamlen

5 March 2012

Abstract
This project discovered and developed algorithms and tools for

(1) automatically retrofitting binary legacy software with access con-
trols, and (2) formally machine-certifying that the retrofitted software
satisfies user-specified security policies. The research resulted in new
software security systems for Java, ActionScript, and x86 native code
that provably secure legacy code without any form of code-producer
cooperation (e.g., source code or compiler support).

1 Summary of Achievements

1.1 Research Outcomes

Research supported by this contract resulted in the development of three
major software security systems with associated discoveries and innovations.
All publications and theses cited in this report are available for download
from the following web page:

http://www.utdallas.edu/~hamlen/research.html

1. We developed the Security Policy Xml (SPoX) tool suite: the first
fully declarative, aspect-oriented policy specification and in-lined ref-
erence monitor (IRM) system. SPoX includes tools for parsing, an-
alyzing, and visualizing XML-based security policy specifications and

SLOUCfiWtS

untrusted Java bytecode binaries. Design, implementation, and exper-
imental results are detailed in the following publications and theses:
[2, 9, 10, 11, 12, 13, 14, 18].

2. We discovered a new, more powerful IRM-certification paradigm based
on model-checking. This was implemented in the Chekov^ verification
system, which automatically machine-verifies the policy-compliance of
IRM-instrumented Java and ActionScript bytecode binaries. Design,
implementation, and experimental results are detailed in the following
publications and thesis: [1, 3, 4, 8, 9, 15, 16, 17].

3. We designed and implemented Reins: a new, machine-certified soft-
ware fault isolation (SFI) system for native x86 architectures that im-
plements IRMs for Intel-based Windows and Linux systems without
any code-producer cooperation, such as compile-side support, source
code, debug symbols, or online symbol stores. Its design and imple-
mentation are detailed in the following publications: [5. 19]. Two ad-
ditional publications are submitted and currently under review.

1.2 Executive Summary of Conclusions

We met all four of the primary goals proposed for the project:

• Our ActionScript and x86 native code IRM implementations success-
fully incorporated machine-verifiable code optimizations during secu-
rity retrofitting. This sufficed to offset much of the enforcement over-
head. For x86 native code, we report overheads of less than 3%—
substantially better than any prior system of equivalent capability to
our knowledge [5].

• Our model-checking approach to IRM certification successfully verified
dataflow-sensitive optimizations [4].

• SPoX facilitated formal policy analyses, such as policy inconsistency
detection and elimination, that are provably undecidable with tradi-
tional, non-declarative aspect-oriented specification approaches [12].

• We successfully extended all of the above technologies to untyped, x86
native code software for real-world operating systems (Windows and
Linux) [5].

We conclude that certified, in-lined reference monitoring is a highly feasible,
flexible, and efficient approach to enforcing software security policies over
binary legacy software. Additional applications of the technology are being
explored in several subsequent projects, detailed in the next section.

1.3 Contribution to Other Awards and Contracts

The discoveries above have spawned three major ongoing research initiatives,
currently supported by awards from the National Science Foundation (NSF),
U.S. Army, and Air Force Office of Scientific Research (AFOSR):

Securing Web Advertisements (NSF, TC:Medium, $1.2M, 2011-
2014). In collaboration with the University of Illinois at Chicago (UIC),
we are applying our ActionScript certifying IRM system to develop security
systems for mobile web advertisements. Malicious web ads (malvertisements)
are a major ongoing concern for end users, publishers, ad distribution net-
works, and advertisers. Our ongoing work leverages the IRM technologies
developed and reported here to provide provably sound and transparent pro-
tections for web ad domains.

Language-based Security for Polymorphic Malware Defense (NSF
CAREER, TC, $500K, 2011-2016). Our successful extension of ma-
chine-aTtih'ed SFI/IRM technologies to x86 native code architectures (see
achievement 3 of §1.1) is a significant milestone toward extending power-
ful language-based security technologies to COTS native code architectures.
Last year the PI received an NSF CAREER award for ongoing research that
develops language-based protections for binary software that is potentially
self-modifying, untyped, memory-unsafe, and obfuscated to resist disassem-
bly.

Reactively Adaptive Malware (AFOSR, FA9550-10-1-0088, $450K,
2011-2014) (U.S. Army, S350K, 2011-2012). The binary analysis and
transformation discoveries reported here are also being applied for active
defense. Our ongoing reactively adaptive malware project develops mobile
code that detects, adapts, and avoids antiviral defenses fully automatically in
the wild. Such technologies are important for anticipating and understanding
next-generation malware, and for counter-attacking cyber-attackers.

2 Educational Outcomes

2.1 Student Support

Funding from this award partially supported 5 graduate students:

• 4 Ph.D. students: Micah Jones (graduated December 2011 [9], now
employed by L-3 Communications), Meera Sridhar, Vishwath Mohan,
and Richard Wartell (expected graduations within the next 1.5 years);
and

• 1 Masters student: Aditi Patwardhan (graduated June 2010 [14]).

Micah's thesis [9] developed the SPoX system (see outcome 1 of §1.1) and
its support for the Chekov^ verifier (see outcome 2 of §1.1). Aditi's the-
sis [14] developed a visualization system for SPoX and Java bytecode [13].
Meera's ongoing thesis work develped Chekov^ and is extending the technol-
ogy to transparency verification of web ad IRMs (see §1.3). Vishwath's and
Richard's ongoing theses developed the Reins system (see outcome 3 of §1.1)
and are continuing with its application to polymorphic malware defense and
reactively adaptive malware (see §1.3).

2.2 Course Development

Research conducted under this contract contributed to the development of
substantial educational material that augmented 3 different courses at UTD:

• CS6V81/7301: Language-based Security (Spring '08, Spring '11) [aver-
age student evaluation: 4.84 / 5 = Excellent];

• CS6371: Advanced Programming Languages (Fall '08, Spring '09. Fall
'09, Spring '10, Spring '11) [average student evaluation: 4.21 / 5 =
Very Good];

• CS4384: Automata Theory (Fall '10, Fall '11) [average student evalu-
ation: 4.41 / 5 = Very Good]

CS6V81/7301: Language-based Security is a graduate-level elective that
trained students in advanced software security technologies such äs IRMs,
SFI, information flow controls, malware analysis, and binary obfuscation.

Students received direct, hands-on experience with discoveries and tools re-
sulting from this contract.

CS6371: Advanced Programming Languages is a grad-level core course
that teaches language and compiler design. As a result of this contract, the
course was significant augmented with examples and content motivated by
secure software development and validation. Students learned type-theoretic
and axiomatic semantical approaches to software security analysis.

CS4384: Automata Theory is an undergraduate core course that teaches
formal languages and introductory computational complexity. The course
was augmented with significant security content including automata-based
approaches to security policy specification and analysis.

Federal CyberSecurity Scholarship For Service (NSF, $1.7M, 2010-
2014). The educational developments above contributed to the establish-
ment and enhancement of a new, NSF-supported Scholarship For Service
(SFS) program at UTD in 2010, which recruits and trains undergraduates
and graduates for federal cyber-security employment. The courses above
have been instrumental for recruiting students into the program.

Publications

[1] Brian W. DeVries, Gopal Gupta, Kevin W. Hamlen, Scott Moore, and
Meera Sridhar. ActionScript bytecode verification with co-logic pro-
gramming. In Stephen Chong and David A. Naumann, editors, Proceed-
ings of the ACM SIGPLAN Workshop on Programming Languages and
Analysis for Security (PLAS), pages 9-15, Dublin, Ireland, June 2009.

[2] Kevin W. Hamlen and Micah Jones. Aspect-oriented in-lined reference
monitors. In Ulfar Erlingsson and Marco Pistoia, editors, Proceedings of
the ACM SIGPLAN Workshop on Programming Languages and Analysis
for Security (PLAS), pages 11-20, Tucson, Arizona, June 2008.

[3] Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Chekov:
Aspect-oriented runtime monitor certification via model-checking. Tech-
nical Report UTDCS-16-11, Computer Science Department, The Uni-
versity of Texas at Dallas, Richardson, Texas, May 2011. http:
//www.utdallas.edu/-hamlen/hamlen-utdcs-16-11.pdf.

[4] Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented
runtime monitor certification. In Proceedings of the 18th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), Tallinn, Estonia, March-April 2012. forthcoming.

[5] Kevin W. Hamlen, Vishwath Mohan, and Richard Wartell. Reining in
Windows API abuses with in-lined reference monitors. Technical Report
UTDCS-18-10, Computer Science Department, The University of Texas
at Dallas, Richardson, Texas, June 2010.

[6] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Certified in-
lined reference monitoring on .NET. In Vugranam C. Sreedhar and Steve
Zdancewic, editors, Proceedings of the 1st ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security (PLAS), pages 7-16,
Ottawa, Ontario, June 2006.

[7] Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computabil-
ity classes for enforcement mechanisms. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 28(l):175-205, January
2006.

[8] Kevin W. Hamlen and Bhavani Thuraisingham. Secure semantic com-
puting. Inter-national Journal of Semantic Computing, 5(2)-.121-131,
June 2011.

[9] Micah Jones. Declarative Aspect-oriented Security Policies for In-lined
Reference Monitors. PhD thesis, The University of Texas at Dal-
las, Richardson, Texas, December 2011. http://www.utdallas.edu/
-hamlen/jpnesllthesis.pdf.

[10] Micah Jones and Kevin W. Hamlen. Enforcing IRM security policies:
Two case studies. In Proceedings of the IEEE Intelligence and Security
Informatics Conference (ISI), pages 214-216, Dallas, Texas, June 2009.

[11] Micah Jones and Kevin W. Hamlen. A service-oriented approach to
mobile code security. In Elhadi Shakshuka and Muhammad Younas,
editors, Proceedings of the 8th International Conference on Mobile Web
Information Systems (MobiWIS). pages 531-538, Niagara Falls, Ontario,
September 2011.

[12] Micah Jons and Kevin W. Hamlen. Disambiguating aspect-oriented se-
curity policies. In Jean-Marc Jezequel and Mario Südholt, editors, Pro-
ceedings of the 9th International Conference on Aspect-Oriented Soft-
ware Development (AOSD), pages 193-204, Rennes, France, March
2010.

[13] Aditi Patwardhan, Kevin W. Hamlen, and Kendra Cooper. Towards
security-aware program visualization for analyzing in-lined reference
monitors. In Proceedings of the International Workshop on Visual Lan-
guages and Computing (VLC), pages 257-260, Oak Brook, Illinois, Oc-
tober 2010.

[14] Aditi A. Patwardhan. Security-aware program visualization for analyz-
ing in-lined reference monitors. Master's thesis, The University of Texas
at Dallas, Richardson, Texas, June 2010. http://www.utdallas.edu/
-hamlen/patwardhanlOthesis.pdf.

[15] Meera Sridhar and Kevin W. Hamlen. ActionScript in-lined« reference
monitoring in Prolog. In Manuel Carro and Ricardo Pena, editors, Pro-
ceedings of the 12th International Symposium, on Practical Aspects of
Declarative Languages (PADL), pages 149-151, Madrid, Spain, January
2010.

[16] Meera Sridhar and Kevin W. Hamlen. Model-checking in-lined refer-
ence monitors. In Gilles Barthe and Manuel V. Hermenegildo, edi-
tors, In Proceedings of the 11th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), pages 312-327,
Madrid, Spain, January 2010.

[17] Meera Sridhar and Kevin W. Hamlen. Flexible in-lined reference moni-
tor certification: Challenges and future directions. In Ranjit Jhala and
Wouter Swierstra, editors, Proceedings of the 5th ACM SIGPLAN Work-
shop on Programming Languages meets Program Verification (PLPV),
pages 55-60, Austin, Texas, January 2011.

[18] Bhavani Thuraisingham and Kevin W. Hamlen. Challenges and future
directions of software technology: Secure software development, invited
paper. In Seikh Iqbal Ahamed, Doo-Hwan Bae, Sung Deok Cha, Carl K.
Chang, Rajesh Subramanyan, Eric Wong, and Hen-I Yang, editors, Pro-
ceedings of the 34th IEEE Annual International Computer Security and

Applications Conference (COMPSAC), pages 17-20, Seoul, Korea, July
2010.

[19] Richard Warteil, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu,
and Bhavani Thuraisingham. Differentiating code from data in x86 bi-
naries. In Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba,
and Michalis Vazirgiannis, editors, Proceedings of the European Con-
ference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), volume 3, pages 522-536, 2011.

8

